

Space weather applications of the Spire nanosatellite constellation

Matthew Angling 1325 to 1335, 22 April 2021 Space Weather Workshop

Spire Earth Obs Agile and operational

- We design, build, launch, and operate one of the largest constellations of satellites
- 3U CubeSats (10x10x30 cm)
- 110+ satellites launched
- 30+ globally distributed ground stations
- Focus on signals of opportunity using software defined radio payloads
 - GNSS
 - 42 sats RO-capable and 26 in RO production
 - 4 GNSS-R sats
 - AIS (ship tracking)
 - ADS-B (aircraft tracking)
- Hosted payloads / Orbital Services

SpWx data

SpWx data Instrument

- STRATOS GNSS Receiver for remote sensing and precise orbit determination
 - Software-defined
 - Dual-frequency
 - Approx. 200 g, 4 W
- Performs POD using zenith antenna
- Performs radio occultation (RO) on high-gain, forward (rising) and backward (setting) antennas
- GPS, GLONASS, Galileo, and QZSS processed
- Is being superseded by STRATOS-2
 - Wide-band, direct sampling receiver
 - Internal phase calibration system for differential code bias estimation

GNSS Earth observations

- SpWx relevant data collected from both POD and RO antennas
- POD antenna
 - 1 Hz, closed loop tracking
- RO antenna
 - 1 Hz, closed loop tracking
 - 50 Hz open loop tracking

RO Antenna

POD Antenna

SpWx data POD antenna

- Topside ionosphere and plasmasphere
 - Calibrated TEC
- 1 Hz, closed loop tracking
- GPS only
- TEC estimated from phase and pseudorange
- Weekly DCB estimate
- Approx. 9 Msamples/day
 - c.f. 5 Msamples/day in April 2019

SpWx data RO antenna

- Bottomside ionosphere
 - Relative TEC
- 1 Hz, closed loop tracking
- GPS only
- TEC estimated from phase and pseudorange
- Approx. 4000 events per day

SpWx data RO antenna

- E region ionosphere
 - Relative TEC
 - Perturbation detection and classification
- 50 Hz, open loop tracking
- Multi-constellation
- "Bottom-up" relative TEC from phase
- Machine learning methods used to group \(\overline{\mathbb{E}} \) 120- similar profiles
- Approx. 9000 events per day

Elevation 0 deg

1 SA 400 km

LSA 170 k

Overlap of POD & RO antennae -5 deg.

SpWx data RO antenna

- Ionospheric scintillation
 - Scintillation indices
- 50 Hz, open loop tracking
- Multi-constellation
- On-board estimation of S4
- Retain and downlink high altitude 50Hz data if S4 exceeds threshold

SpWx data Future

- Combined ionosphere product
- Level RO antenna TEC data to POD antenna TEC data
 - Calibrated data across extended height range
 - Estimate of POD antenna DCB
- To be rolled out in 2021

POD Antenna

RO Antenna

SpWx data Future

- Thermosphere
 - Density estimates
- POD data can be inverted to estimate thermospheric drag
- Combined with better drag coefficient models to provide density estimates

SpWx products

Ionospheric DA

- Spire TEC data is suitable for use in data assimilation models
- DA is required to:
 - Overcome the limitations of the traditional Abel Transform analysis of RO data
 - Effectively combine different types of observation
- Spire TEC Environment Assimilation Model (STEAM)
 - 4D Local Ensemble Transform Kalman Filter
 - Routinely uses ground and Spire data
 - Experimental Spire/COSMIC2 DA

ICAO products

- ICAO has a requirement to provide space weather advisories to aviation users
- STEAM ensemble can be used to estimate probability of VTEC falling in bands
 - The probabilities can be mapped to RGB colours
 - Red region: high confidence vTEC is within severe band
 - Blue region: high confidence vTEC is within moderate band
 - Green region: high confidence vTEC is within quiet band

Conclusions

Conclusions

- Ionospheric information can be derived from GNSS signals
- Ionospheric sensing on different scales
 - Global
 - Slant total electron content (TEC)
 - Mid-scale
 - Sporadic E, travelling ionospheric disturbances
 - Small scale
 - Scintillation events
- Thermospheric sensing being developed
- Spire provides these observations
 - In data denied areas
 - With low-latency

